BE/BTech & ME/MTech Final Year Projects for Computer Science | Information Technology | ECE Engineer | IEEE Projects Topics, PHD Projects Reports, Ideas and Download | Sai Info Solution | Nashik |Pune |Mumbai
director@saiinfo settings_phone02536644344 settings_phone02048614848 settings_phone+919270574718 +919096813348 settings_phone+919028924212
logo


SAI INFO SOLUTION


Diploma | BE |B.Tech |ME | M.Tech |PHD

Project Development and Training

Search Project by Domainwise


Context-Aware Radio Access Technology Selection in 5G Ultra Dense Networks


Privacy-Assured Outsourcing of
Abstract


Ultra dense network (UDN) is the extreme densification of heterogeneous radio access technologies (RATs) that are deployed closely in a coordinated or uncoordinated manner. The densification of RATs forms an overlapping zone of signal coverage, leading user equipment (UE) to frequent signal handovers among the available RATs. Consequently, this degrades the overall system performance. The traditional approach of RAT selection is network-centric and the decision is primarily focused on the signal aspect. However, the next generation of digital wave is a paradigm shift to being user-centric. In this paper, a context-aware multi-attribute RAT (CMRAT) selection approach is proposed to eliminate unnecessary handover of UE among RATs and determine the best RAT as the next point of attachment among the available ones in the UDN. CMRAT integrates the context-aware concept with multi-attribute decision making (MADM) theory in RAT selection. CMRAT is formed with two mechanisms, including, first, a context-aware analytical hierarchy process mechanism to prioritize the criteria for obtaining the weight. Then, a context-aware technique for order preference by similarity to an ideal solution mechanism is employed to choose the best RAT amongst the available RATs. The proposed CMRAT mechanism was implemented and validated usingMATLAB. The obtained simulation ndings demonstrate that the proposed CMRAT approach outperforms classic MADM methods, namely TOPSIS, SAW, and GRA with respect to the number of handovers and ranking abnormality metrics. Hence, this paper paves the way to choose RAT based on context information comprising network and user preference criteria information.

KeyWords
Context awareness, multi-attribute decision making, heterogeneous networks, 5G wireless technologies.



Share
Share via WhatsApp
BE/BTech & ME/MTech Final Year Projects for Computer Science | Information Technology | ECE Engineer | IEEE Projects Topics, PHD Projects Reports, Ideas and Download | Sai Info Solution | Nashik |Pune |Mumbai
Call us : 09096813348 / 02536644344
Mail ID : developer.saiinfo@gmail.com
Skype ID : saiinfosolutionnashik