BE/BTech & ME/MTech Final Year Projects for Computer Science | Information Technology | ECE Engineer | IEEE Projects Topics, PHD Projects Reports, Ideas and Download | Sai Info Solution | Nashik |Pune |Mumbai
director@saiinfo settings_phone02536644344 settings_phone02048614848 settings_phone+919270574718 +919096813348 settings_phone+919028924212
logo


SAI INFO SOLUTION


Diploma | BE |B.Tech |ME | M.Tech |PHD

Project Development and Training

Search Project by Domainwise


Variation of the Korotkoff stethoscope sounds during blood pressure measurement: Analysis using a convolutional neural network


Privacy-Assured Outsourcing of
Abstract


Korotkoff sounds are known to change their characteristics during blood pressure (BP) measurement, resulting in some uncertainties for systolic and diastolic pressure (SBP and DBP) determinations. The aim of this study was to assess the variation of Korotkoff sounds during BP measurement by examining all stethoscope sounds associated with each heartbeat from above systole to below diastole during linear cuff deflation. Three repeat BP measurements were taken from 140 healthy subjects (age 21 to 73 years; 62 female and 78 male) by a trained observer, giving 420 measurements. During the BP measurements, the cuff pressure and stethoscope signals were simultaneously recorded digitally to a computer for subsequent analysis. Heart beats were identified from the oscillometric cuff pressure pulses. The presence of each beat was used to create a time window (1s, 2000 samples) centered on the oscillometric pulse peak for extracting beat-by-beat stethoscope sounds. A time-frequency two-dimensional matrix was obtained for the stethoscope sounds associated with each beat, and all beats between the manually determined SBPs and DBPs were labeled as ‚??Korotkoff‚??. A convolutional neural network was then used to analyze consistency in sound patterns that were associated with Korotkoff sounds. A 10-fold cross-validation strategy was applied to the stethoscope sounds from all 140 subjects, with the data from ten groups of 14 subjects being analysed separately, allowing consistency to be evaluated between groups. Next, within-subject variation of the Korotkoff sounds analysed from the three repeats was quantified, separately for each stethoscope sound beat. There was consistency between folds with no significant differences between groups of 14 subjects (P = 0.09 to P = 0.62). Our results showed that 80.7% beats at SBP and 69.5% at DBP were analysed as Korotkoff sounds, with significant differences between adjacent beats at systole (13.1%, P = 0.001) and diastole (17.4%, P < 0.001). Results reached stability for SBP (97.8%, at 6th beats below SBP) and DBP (98.1%, at 6th beat above DBP) with no significant differences between adjacent beats (SBP P = 0.74; DBP P = 0.88). There were no significant differences at high cuff pressures, but at low pressures close to diastole there was a small difference (3.3%, P = 0.02). In addition, greater within subject variability was observed at SBP (21.4%) and DBP (28.9%), with a significant difference between both (P < 0.02). In conclusion, this study has demonstrated that Korotkoff sounds can be consistently identified during the period below SBP and above DBP, but that at systole and diastole there can be substantial variations that are associated with high variation in the three repeat measurements in each subject.

KeyWords
Blood pressure; Convolutional neural network; Korotkoff sound.



Share
Share via WhatsApp
BE/BTech & ME/MTech Final Year Projects for Computer Science | Information Technology | ECE Engineer | IEEE Projects Topics, PHD Projects Reports, Ideas and Download | Sai Info Solution | Nashik |Pune |Mumbai
Call us : 09096813348 / 02536644344
Mail ID : developer.saiinfo@gmail.com
Skype ID : saiinfosolutionnashik