BE/BTech & ME/MTech Final Year Projects for Computer Science | Information Technology | ECE Engineer | IEEE Projects Topics, PHD Projects Reports, Ideas and Download | Sai Info Solution | Nashik |Pune |Mumbai
director@saiinfo settings_phone02536644344 settings_phone02048614848 settings_phone+919270574718 +919096813348 settings_phone+919028924212
logo


SAI INFO SOLUTION


Diploma | BE |B.Tech |ME | M.Tech |PHD

Project Development and Training

Search Project by Domainwise


Location-Based Aggregate Queries for Heterogeneous Neighboring Objects


Privacy-Assured Outsourcing of
Abstract


Currently, most of the processing techniques for the conventional location-based queries focus only on a single type of objects. However, in real-life applications, the user may be interested in obtaining information about different types of objects, in terms of their neighboring relationship. We term the different types of stationary objects closer to each other the heterogeneous neighboring objects (HNOs). Efcient processing of the location-based queries on the HNOs is more complicated than that on a single data source, because the neighboring relationship between the HNOs inevitably affects the query result. In this paper, we present useful and important location-based aggregate queries on the HNOs, which can provide useful object information by considering both the spatial closeness of objects to the query object and the neighboring relationship between objects. The location-based aggregate queries consist of four queries: the shortest average-distance (SAvgD) query, the shortest minimal-distance (SMinD) query, the shortest maximal-distance (SMaxD) query, and the shortest sum-distance (SSumD) query. To process the location- based aggregate queries, we devise two heuristics, the HNOs-qualifying heuristic and the HNOs-pruning heuristic, to efciently determine the HNOs sets. According to different query types, we further propose four heuristics, the SAvgD-pruning heuristic, the SMinD-pruning heuristic, the SMaxD-pruning heuristic, and the SSumD-pruning heuristic, to effectively reduce the number of distance computations required for query processing. Comprehensive experiments are conducted to demonstrate the effectiveness of the heuristics and the efficiency of the proposed approaches.

KeyWords
Location-based queries, heterogeneous neighboring objects, location-based aggregate queries, spatial closeness, neighboring relationship.



Share
Share via WhatsApp
BE/BTech & ME/MTech Final Year Projects for Computer Science | Information Technology | ECE Engineer | IEEE Projects Topics, PHD Projects Reports, Ideas and Download | Sai Info Solution | Nashik |Pune |Mumbai
Call us : 09096813348 / 02536644344
Mail ID : developer.saiinfo@gmail.com
Skype ID : saiinfosolutionnashik