BE/BTech & ME/MTech Final Year Projects for Computer Science | Information Technology | ECE Engineer | IEEE Projects Topics, PHD Projects Reports, Ideas and Download | Sai Info Solution | Nashik |Pune |Mumbai
director@saiinfo settings_phone02536644344 settings_phone+919270574718 +919096813348 settings_phone+917447889268
logo


SAI INFO SOLUTION


Diploma | BE |B.Tech |ME | M.Tech |PHD

Project Development and Training

Search Project by Domainwise


Automatic Compilation of Diverse CNNs onto High-Performance FPGA Accelerators


Scalable and Secure Big Data I

3D Reconstruction in Canonical

Class Agnostic Image Common Ob
Abstract


A broad range of applications are increasingly benefiting from the rapid and flourishing development of convolutional neural networks (CNNs). The FPGA-based CNN inference accelerator is gaining popularity due to its high-performance and low-power as well as FPGA??s conventional advantage of reconfigurability and flexibility. Without a general compiler to automate the implementation, however, significant efforts and expertise are still required to customize the design for each CNN model. In this work, we present an RTL-level CNN compiler that automatically generates customized FPGA hardware for the inference tasks of various CNNs, in order to enable highlevel fast prototyping of CNNs from software to FPGA and still keep the benefits of low-level hardware optimization. First, a general-purpose library of RTL modules is developed to model different operations at each layer. The integration and dataflow of physical modules are predefined in the top-level system template and reconfigured during compilation for a given CNN algorithm. The runtime control of layer-by-layer sequential computation is managed by the proposed execution schedule so that even highly irregular and complex network topology, e.g. GoogLeNet and ResNet, can be compiled. The proposed methodology is demonstrated with various CNN algorithms, e.g. NiN, VGG, GoogLeNet and ResNet, on two standalone Intel FPGAs, Arria 10 and Stratix 10, achieving end-to-end inference throughputs of 969 GOPS and 1,604 GOPS, respectively, with batch size of one.

KeyWords
Convolutional neural networks, FPGA, Neural network hardware.



Share
Share via WhatsApp
BE/BTech & ME/MTech Final Year Projects for Computer Science | Information Technology | ECE Engineer | IEEE Projects Topics, PHD Projects Reports, Ideas and Download | Sai Info Solution | Nashik |Pune |Mumbai
Call us : 09096813348 / 02536644344
Mail ID : developer.saiinfo@gmail.com
Skype ID : saiinfosolutionnashik