BE/BTech & ME/MTech Final Year Projects for Computer Science | Information Technology | ECE Engineer | IEEE Projects Topics, PHD Projects Reports, Ideas and Download | Sai Info Solution | Nashik |Pune |Mumbai
director@saiinfo settings_phone02536644344 settings_phone+919270574718 +919096813348 settings_phone+917447889268
logo


SAI INFO SOLUTION


Diploma | BE |B.Tech |ME | M.Tech |PHD

Project Development and Training

Search Project by Domainwise


Implementation of Data-optimized FPGA-based Accelerator for Convolutional Neural Network


Scalable and Secure Big Data I

Class Agnostic Image Common Ob

3D Reconstruction in Canonical
Abstract


Convolutional Neural Networks (CNNs) are widely used for image recognition, and FPGAs are considered suitable platform for CNNs due to their low power consumption and reconfigurability. While CNNs are mostly trained using floating point data type for high inference accuracy, fixed point data type can be used to reduce data size and take advantage of computation efficiency on FPGAs without any accuracy loss. In this paper, we propose an accelerator design for LeNet-5 CNN architecture [1] for MNIST handwritten digit recognition. The accelerator is synthesized with Xilinx Vivado High-Level Synthesis (HLS) tool (v2017.2), targeting xczu9eg-ffvb1156-2-i FPGA board. The proposed accelerator focuses on reducing latency and memory usage, and the performance is compared with a conventional floating point design. Our proposed accelerator can achieve latency reduction up to 90% and memory usage reduction up to 40% without any accuracy loss, compared to the conventional design.

KeyWords
Convolutional Neural Network, FPGA, High-level Synthesis, Accelerator



Share
Share via WhatsApp
BE/BTech & ME/MTech Final Year Projects for Computer Science | Information Technology | ECE Engineer | IEEE Projects Topics, PHD Projects Reports, Ideas and Download | Sai Info Solution | Nashik |Pune |Mumbai
Call us : 09096813348 / 02536644344
Mail ID : developer.saiinfo@gmail.com
Skype ID : saiinfosolutionnashik