BE/BTech & ME/MTech Final Year Projects for Computer Science | Information Technology | ECE Engineer | IEEE Projects Topics, PHD Projects Reports, Ideas and Download | Sai Info Solution | Nashik |Pune |Mumbai
director@saiinfo settings_phone02536644344 settings_phone02030107071 settings_phone+919270574718 +919096813348 settings_phone+919028924212
logo


SAI INFO SOLUTION


Diploma | BE |B.Tech |ME | M.Tech |PHD

Project Development and Training

Search Project by Domainwise


A Multi-Label Learning Method Using Affinity Propogation and Support vector machine


Privacy-Assured Outsourcing of
Abstract


Multi-label learning plays a critical role in the areas of data mining, multimedia, and machine learning. Although many multi-label approaches have been proposed, few of them have considered to de-emphasize the effect of noisy features in the learning process. To address this issue, this paper designs a new method named representative multi-label learning algorithm. Instead of considering all features, the proposed algorithm focuses only on the representative ones, via incorporating an affinity propagation algorithm, kernel formulation, and a multi-label support vector machine into the learning framework. Specifically, it first adopts an affinity propagation algorithm to select a set of representative features and capture the relationships among features. Then, the algorithm constructs the representative kernel functions to measure the similarity between data instances. Finally, a multi-label support vector machine is applied to solve the learning problem. Based on the representative multi-label learning algorithm, we further design a representative multi-label learning ensemble framework to improve the accuracy, stableness, and robustness. Experimental results show that the proposed algorithm works well on most of the datasets and outperforms the compared multi-label learning approaches.

KeyWords
Affinity propagation, classifier ensemble, multi-label learning, support vector machine.



Share
Share via WhatsApp
BE/BTech & ME/MTech Final Year Projects for Computer Science | Information Technology | ECE Engineer | IEEE Projects Topics, PHD Projects Reports, Ideas and Download | Sai Info Solution | Nashik |Pune |Mumbai
Call us : 09096813348 / 02536644344
Mail ID : developer.saiinfo@gmail.com
Skype ID : saiinfosolutionnashik