BE/BTech & ME/MTech Final Year Projects for Computer Science | Information Technology | ECE Engineer | IEEE Projects Topics, PHD Projects Reports, Ideas and Download | Sai Info Solution | Nashik |Pune |Mumbai
director@saiinfo settings_phone02536644344 settings_phone+919270574718 +919096813348 settings_phone+917447889268
logo


SAI INFO SOLUTION


Diploma | BE |B.Tech |ME | M.Tech |PHD

Project Development and Training

Search Project by Domainwise


Robust QRS Detection Using High-Resolution Wavelet Packet Decomposition and Time-Attention Convolutional Neural Network


3D Reconstruction in Canonical

Class Agnostic Image Common Ob
Abstract


QRS detection is a crucial step in analyzing the electrocardiogram (ECG). For ECG collected by wearable devices, a robust QRS detection algorithm that yields high accuracy in spite of abnormal QRS morphologies and severe noise is needed. In this paper, we propose a QRS detection method based on high-resolution wavelet packet decomposition (HR-WPD) and convolutional neural network (CNN). Firstly, we design the HR-WPD that decomposes the ECG into multiple signals with different frequency bands to provide detailed QRS features. Secondly, all the decomposed signals are forwarded to a CNN for comprehensive morphology analysis and QRS prediction. To further improve the robustness, a time-attention module acting on the input signals is added to the CNN. Finally, a variable threshold is imposed to locate the QRS. The proposed method is validated by using two noisy databases (i.e., Telehealth Database (TELEDB) and MIT-BIH Noise Stress Test Database (NSTDB)) and one database with multiple ECG morphologies (i.e., MIT-BIH Arrhythmia Database (ARRDB)). The experiment results show that the proposed method achieves a comparable or even better performance compared with state-of-art methods on the TELEDB (SE 98.99%, PC 95.57%, ER 5.61%, F1 97.25%), NSTDB (SE 99.25%, PC 96.31%, ER 4.55%, F1 97.76%) and ARRDB (SE 99.89%, PC 99.90%, ER 0.21%, F1 99.89%), suggesting that it is highly applicable to the QRS detection for ECG collected by wearable devices.

KeyWords
Electrocardiogram, convolutional neural network, wavelet packet decomposition, QRS detect.



Share
Share via WhatsApp
BE/BTech & ME/MTech Final Year Projects for Computer Science | Information Technology | ECE Engineer | IEEE Projects Topics, PHD Projects Reports, Ideas and Download | Sai Info Solution | Nashik |Pune |Mumbai
Call us : 09096813348 / 02536644344
Mail ID : developer.saiinfo@gmail.com
Skype ID : saiinfosolutionnashik