BE/BTech & ME/MTech Final Year Projects for Computer Science | Information Technology | ECE Engineer | IEEE Projects Topics, PHD Projects Reports, Ideas and Download | Sai Info Solution | Nashik |Pune |Mumbai
director@saiinfo settings_phone02536644344 settings_phone+919270574718 +919096813348 settings_phone+917447889268
logo


SAI INFO SOLUTION


Diploma | BE |B.Tech |ME | M.Tech |PHD

Project Development and Training

Search Project by Domainwise


Benchmark of the Compute-in-Memory-Based DNN Accelerator With Area Constraint


3D Reconstruction in Canonical
Abstract


Compute-in-memory (CIM) is a promising computing paradigm to accelerate the inference of deep neural network (DNN) algorithms due to its high processing parallelism and energy efficiency. Prior CIM-based DNN accelerators mostly consider full custom design, which assumes that all the weights are stored on-chip. For lightweight smart edge devices, this assumption may not hold. In this article, CIM-based DNN accelerators are designed and benchmarked under different chip area constraints. First, a scheduling strategy and dataflow for DNN inference is investigated when only part of the weights can be stored on-chip. Two weight reload schemes are evaluated: 1) reload partial weights and reuse input/output feature maps and 2) load a batch of input and reuse the partial weights on-chip across the batch. Then, system-level performance benchmark is performed for the inference of ResNet-18 on ImageNet data set. The design tradeoffs with different area constraints, dataflow, and device technologies [static random access memory (SRAM) versus ferroelectric field-effect transistor (FeFET)] are discussed

KeyWords
Area constraint, compute-in-memory (CIM), deep neural network (DNN), hardware accelerator



Share
Share via WhatsApp
BE/BTech & ME/MTech Final Year Projects for Computer Science | Information Technology | ECE Engineer | IEEE Projects Topics, PHD Projects Reports, Ideas and Download | Sai Info Solution | Nashik |Pune |Mumbai
Call us : 09096813348 / 02536644344
Mail ID : developer.saiinfo@gmail.com
Skype ID : saiinfosolutionnashik