BE/BTech & ME/MTech Final Year Projects for Computer Science | Information Technology | ECE Engineer | IEEE Projects Topics, PHD Projects Reports, Ideas and Download | Sai Info Solution | Nashik |Pune |Mumbai
director@saiinfo settings_phone02536644344 settings_phone+919270574718 +919096813348 settings_phone+917447889268
logo


SAI INFO SOLUTION


Diploma | BE |B.Tech |ME | M.Tech |PHD

Project Development and Training

Search Project by Domainwise


A High-Performance VLSI Architecture for a Self-Feedback Convolutional Neural Network


Using Big Data Analytics to Cr

Scalable and Secure Big Data I

3D Reconstruction in Canonical
Abstract


This brief studies the problem of developing an area-time efficient VLSI architecture for a novel self-feedback Convolutional Neural Network (CNN). Self-feedback CNNs offer the promise of high-precision object detection amidst occlusions. However, the size of a typical network required for practical applications presents a challenge for embedded system development. We first present the structure of the self-feedback CNN. We then present an efficient systolic array architecture for the self-feedback CNN with low on-chip memory requirement. The self-feedback CNN has been tested on the KITTI benchmark dataset and it achieves high accuracy for detecting occluded cyclists and pedestrians. FPGA implementation of the proposed architecture on Xilinx Virtex7 XC7VX485T achieves roughly 1.14 Tera Operations per second (TOP/s) at 386 MHz with 9 reduction in on-chip memory requirement compared to recent CNN architectures.

KeyWords
CNN,VLSI



Share
Share via WhatsApp
BE/BTech & ME/MTech Final Year Projects for Computer Science | Information Technology | ECE Engineer | IEEE Projects Topics, PHD Projects Reports, Ideas and Download | Sai Info Solution | Nashik |Pune |Mumbai
Call us : 09096813348 / 02536644344
Mail ID : developer.saiinfo@gmail.com
Skype ID : saiinfosolutionnashik