BE/BTech & ME/MTech Final Year Projects for Computer Science | Information Technology | ECE Engineer | IEEE Projects Topics, PHD Projects Reports, Ideas and Download | Sai Info Solution | Nashik |Pune |Mumbai
director@saiinfo settings_phone02536644344 settings_phone+919270574718 +919096813348 settings_phone+917447889268
logo


SAI INFO SOLUTION


Diploma | BE |B.Tech |ME | M.Tech |PHD

Project Development and Training

Search Project by Domainwise


Real-Time Detection of Apple Leaf Diseases Using Deep Learning Approach Based on Improved Convolutional Neural Networks


Scalable and Secure Big Data I

Class Agnostic Image Common Ob

Cross-Modality Image Synthesi
Abstract


Alternaria leaf spot, Brown spot, Mosaic, Grey spot, and Rust are ve common types of apple leaf diseases that severely affect apple yield. However, the existing research lacks an accurate and fast detector of apple diseases for ensuring the healthy development of the apple industry. This paper proposes a deep learning approach that is based on improved convolutional neural networks (CNNs) for the real-time detection of apple leaf diseases. In this paper, the apple leaf disease dataset (ALDD), which is composed of laboratory images and complex images under real eld conditions, is rst constructed via data augmentation and image annotation technologies. Based on this, a new apple leaf disease detection model that uses deep-CNNs is proposed by introducing the GoogLeNet Inception structure and Rainbow concatenation. Finally, under the hold-out testing dataset, using a dataset of 26,377 images of diseased apple leaves, the proposed INAR-SSD (SSD with Inception module and Rainbow concatenation) model is trained to detect these ve common apple leaf diseases. The experimental results show that the INAR-SSD model realizes a detection performance of 78.80% mAP on ALDD, with a high-detection speed of 23.13 FPS. The results demonstrate that the novel INAR-SSD model provides a high-performance solution for the early diagnosis of apple leaf diseases that can perform real-time detection of these diseases with higher accuracy and faster detection speed than previous methods.

KeyWords
Apple leaf diseases, real-time detection, deep learning, convolutional neural networks, feature fusion.



Share
Share via WhatsApp
BE/BTech & ME/MTech Final Year Projects for Computer Science | Information Technology | ECE Engineer | IEEE Projects Topics, PHD Projects Reports, Ideas and Download | Sai Info Solution | Nashik |Pune |Mumbai
Call us : 09096813348 / 02536644344
Mail ID : developer.saiinfo@gmail.com
Skype ID : saiinfosolutionnashik