BE/BTech & ME/MTech Final Year Projects for Computer Science | Information Technology | ECE Engineer | IEEE Projects Topics, PHD Projects Reports, Ideas and Download | Sai Info Solution | Nashik |Pune |Mumbai
director@saiinfo settings_phone02536644344 settings_phone+919270574718 +919096813348 settings_phone+917447889268
logo


SAI INFO SOLUTION


Diploma | BE |B.Tech |ME | M.Tech |PHD

Project Development and Training

Search Project by Domainwise


A Wavelet-Predominant Algorithm Can Evaluate Quality of THz Security Image and Identify Its Usability


Scalable and Secure Big Data I

A Wavelet-Predominant Algorith
Abstract


This paper presents an aggregate wavelet-predominant algorithm to measure the distortions in THz security images. The algorithm integrates a spectral based sharpness estimator, a noise estimator derived alpha-stable model and an overall viewing experience estimator based on free-energy principle. Among them, the greater weight is assigned to the spectral-based sharpness estimator considering that the main quality factor in THz security image is sharpness. To verify the feasibility of the proposed metric, we construct the THz security image dataset including a total of 181 THz security images, and each image has the mean opinion score (MOS) collected via subjective quality evaluation experiment. Quantitative experimental results on the constructed THz security image dataset show that the aggregate wavelet-predominant estimator produces the promising overall performance for the estimation of MOS values, with PLCC, SROCC, and RMSE of 0.900, 0.873, and 0.386, respectively. This performance is superior to other opinion-unaware approaches, viz., FISBLIM, SISBLIM, NIQE, CPBD, SINE, S3, FISH, and noise estimator. The determination coefļ¬?cient (R2) of linear regression between reference and predicted MOSs is 0.81. The result of Blandā??Altman analysis further validates that the aggregate wavelet-predominant estimator can substitute for the subjective IQA of THz security image, with approximately 94.5% of data points locating within the limits of agreement. For usability identiļ¬?cation, the wavelet-predominant estimator gives the satisfactory results, with accuracy, precision, recall rate, and false positive rate of 84.0%, 79.8%, 95.0%, and 29.6%, respectively. Furthermore, the potential application perspectives of the proposed metric can refer to commercial applications (guarantee THz security images of good quality) and scientiļ¬?c researches (assist in software development for THz security image analysis). The dataset is available at https://doi.org/10.6084/m9.ļ¬?gshare.7700123.v3. Possible researches on this dataset may include the development of THz quality standards, the selection of the best display mode,the enhancement of images, the modeling of image noise, and the detection of prohibited goods.

KeyWords
Terahertz security image dataset, usability identiļ¬?cation, blind image quality assessment, free-energy principle, alpha-stable distribution.



Share
Share via WhatsApp
BE/BTech & ME/MTech Final Year Projects for Computer Science | Information Technology | ECE Engineer | IEEE Projects Topics, PHD Projects Reports, Ideas and Download | Sai Info Solution | Nashik |Pune |Mumbai
Call us : 09096813348 / 02536644344
Mail ID : developer.saiinfo@gmail.com
Skype ID : saiinfosolutionnashik