BE/BTech & ME/MTech Final Year Projects for Computer Science | Information Technology | ECE Engineer | IEEE Projects Topics, PHD Projects Reports, Ideas and Download | Sai Info Solution | Nashik |Pune |Mumbai
director@saiinfo settings_phone02536644344 settings_phone02048626262 settings_phone+919270574718 +919096813348 settings_phone+919028924212
logo


SAI INFO SOLUTION

Diploma | BE |B.Tech |ME | M.Tech |PHD

Project Development and Training

Search Project by Domain wise


Cost-Effective Cloud Server Provisioning for Predictable Performance of Big Data Analytics


Using Big Data Analytics to Cr

Class Agnostic Image Common Ob

Class Agnostic Image Common Ob
Abstract


Cloud datacenters are underutilized due to server over-provisioning. To increase datacenter utilization, cloud providers offer users an option to run workloads such as big data analytics on the underutilized resources, in the form of cheap yet revocable transient servers (e.g., EC2 spot instances, GCE preemptible instances). Though at highly reduced prices, deploying big data analytics on the unstable cloud transient servers can severely degrade the job performance due to instance revocations. To tackle this issue, this paper proposes iSpot, a cost-effective transient server provisioning framework for achieving predictable performance in the cloud, by focusing on Spark as a representative Directed Acyclic Graph (DAG)-style big data analytics workload. It first identifies the stable cloud transient servers during the job execution by devising an accurate Long Short-Term Memory (LSTM)-based price prediction method. Leveraging automatic job profiling and the acquired DAG information of stages, we further build an analytical performance model and present a lightweight critical data checkpointing mechanism for Spark, to enable our design of iSpot provisioning strategy for guaranteeing the job performance on stable transient servers. Extensive prototype experiments on both EC2 spot instances and GCE preemptible instances demonstrate that, iSpot is able to guarantee the performance of big data analytics running on cloud transient servers while reducing the job budget by up to 83:8% in comparison to the state-of-the-art server provisioning strategies, yet with acceptable runtime overhead.

KeyWords
Predictable performance, big data analytics, cloud computing, transient server provisioning, data checkpointing.



Share
Share via WhatsApp
BE/BTech & ME/MTech Final Year Projects for Computer Science | Information Technology | ECE Engineer | IEEE Projects Topics, PHD Projects Reports, Ideas and Download | Sai Info Solution | Nashik |Pune |Mumbai
Call us : 09096813348 / 02536644344
Mail ID : developer.saiinfo@gmail.com
Skype ID : saiinfosolutionnashik